
Reproducible parallel simulation
experiments via pure functional
programming

TOM WARNKE AND ADELINDE M. UHRMACHER
Institute for Visual and Analytic Computing
University of Rostock

DS-RT 2019 c© 2019 UNIVERSITY OF ROSTOCK | INSTITUTE FOR VISUAL AND ANALYTIC COMPUTING 1 / 13

Motivation

Simulation-based research suffers from a “reproducibility crisis”.

We propose to make results from simulation experiments reproducible by
expressing them as pure functions.

A pure function

• is deterministic and

• has no side effects

DS-RT 2019 c© 2019 UNIVERSITY OF ROSTOCK | INSTITUTE FOR VISUAL AND ANALYTIC COMPUTING 2 / 13

Execution of a simulation experiment

Experiment

Parametrization Parametrization

R
un

R
un

R
un

R
un

R
un

R
un

DS-RT 2019 c© 2019 UNIVERSITY OF ROSTOCK | INSTITUTE FOR VISUAL AND ANALYTIC COMPUTING 3 / 13

Execution of a simulation experiment

Imperative implementation:
initRNG (seed)
for (p : parametrizations) {

for (i : 1.. runNumber) {
s = randomInt ()
result [p,i] = run(p,s)

}
}

Purely functional implementation:
rng = initRNG (seed)
e = parametrizations . traverse { p =>

randomInt .map { s =>
run(p,s)

}. replicateA (runNumber)
}
result = e.run(rng)

• implicit vs. explicit RNG state

• when parallelized, can determinism be affected by race conditions?

DS-RT 2019 c© 2019 UNIVERSITY OF ROSTOCK | INSTITUTE FOR VISUAL AND ANALYTIC COMPUTING 4 / 13

Sequential execution
Expressing a single simulation run

randomInt

randomRun

4 run

randomRun = randomInt.map(s => run(s))
randomRun : RNG => (RNG, Result)

DS-RT 2019 c© 2019 UNIVERSITY OF ROSTOCK | INSTITUTE FOR VISUAL AND ANALYTIC COMPUTING 5 / 13

Sequential execution
Combining runs

randomRun

randomRun

randomRun

nRandomRuns

nRandomRuns = randomRun.replicateA(3)
nRandomRuns : RNG => (RNG, List[Result])

DS-RT 2019 c© 2019 UNIVERSITY OF ROSTOCK | INSTITUTE FOR VISUAL AND ANALYTIC COMPUTING 6 / 13

Concurrent execution
Expressing a single simulation run

The execution of the run is suspended in an asynchronous effect monad IO.

randomInt

randomRun

4 run
IO.delay

IO

randomRun = randomInt.map(s => IO.delay(run(s)))
randomRun : RNG => (RNG, IO[Result])

DS-RT 2019 c© 2019 UNIVERSITY OF ROSTOCK | INSTITUTE FOR VISUAL AND ANALYTIC COMPUTING 7 / 13

Concurrent execution
Combining runs

randomRun

randomRun

randomRun

nRandomRuns

IO IO IO

IO

nRandomRuns = randomRun.replicateA(3).map(_.parSequence)
nRandomRuns : RNG => (RNG, IO[List[Result]])

DS-RT 2019 c© 2019 UNIVERSITY OF ROSTOCK | INSTITUTE FOR VISUAL AND ANALYTIC COMPUTING 8 / 13

Types and complex experiments
Interaction of concurrency and random number generation
RNG => (RNG, IO[?])

randomRun

IO

?

• parallel execution
• need to know how many RNs are

needed in the beginning

RNG => IO[(RNG, ?)]

randomRun

IO

?

• sequential execution
• can decide to draw new RNs based

on intermediate results

DS-RT 2019 c© 2019 UNIVERSITY OF ROSTOCK | INSTITUTE FOR VISUAL AND ANALYTIC COMPUTING 9 / 13

Dynamic replication conditions

oneBatch

IO

enough?

IO

DS-RT 2019 c© 2019 UNIVERSITY OF ROSTOCK | INSTITUTE FOR VISUAL AND ANALYTIC COMPUTING 10 / 13

Dynamic replication conditions

oneBatch

IO

oneBatch

IO

enough?

enough?

DS-RT 2019 c© 2019 UNIVERSITY OF ROSTOCK | INSTITUTE FOR VISUAL AND ANALYTIC COMPUTING 11 / 13

Example: Statistical model checking with NetLogo
Sequential probability ratio test
SPRT. check (

run(randomInt)(s =>
NetLogo .run(model = ExampleModel .contents ,

stopCond = nlBoolean (" ticks > 50"),
observables = List(obs),
params = Map(" acceleration " -> 0.01 ,

" deceleration " -> 0.01) ,
seed = s)

),
batchSize = 4,
property = redCarNeverStops ,
p = 0.8 ,
alpha = 0.05 ,
beta = 0.05 ,
delta = 0.05

)

DS-RT 2019 c© 2019 UNIVERSITY OF ROSTOCK | INSTITUTE FOR VISUAL AND ANALYTIC COMPUTING 12 / 13

Conclusion

Pure functional programming is one elegant way to express deterministic, parallel
simulation experiments.

• It guarantees determinism by design.

• Diverse types of simulation experiments can be implemented.

• Supported by established FP libraries.

DS-RT 2019 c© 2019 UNIVERSITY OF ROSTOCK | INSTITUTE FOR VISUAL AND ANALYTIC COMPUTING 13 / 13

