
A DSL for Continuous-Time Agent-Based
Modeling and Simulation

A DSL for Continuous-Time
Agent-Based Modeling and
Simulation

TOM WARNKE
Institute of Computer Science, University of Rostock

December 11, 2016 c© 2016 UNIVERSITY OF ROSTOCK | INSTITUTE FOR COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 1 / 7

A DSL for Continuous-Time Agent-Based
Modeling and Simulation

Continuous-time agent-based modeling
Limitations in the state of the art

• Agent-based models are mostly developed in ABMS frameworks
(Repast Simphony, Netlogo, etc.)

• These frameworks support time-stepped models very well

• However, many problems can be modeled better in continuous time

• Continuous-time models in ABMS frameworks require manual scheduling

• The resulting model- and simulation-specific code is mixed

⇒ Model is not readable

⇒ Reusing code is hard

December 11, 2016 c© 2016 UNIVERSITY OF ROSTOCK | INSTITUTE FOR COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 2 / 7

A DSL for Continuous-Time Agent-Based
Modeling and Simulation

An agent-based continuous-time SIR model
An example

• Agents are either susceptible, infected or recovered

• Agents are connected in a network

• Initially, some agents are infected

• Susceptible agents get infected after a stochastic waiting time based on the
number of infected network neighbors

• Infected agents recover after a stochastic waiting time

December 11, 2016 c© 2016 UNIVERSITY OF ROSTOCK | INSTITUTE FOR COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 3 / 7

A DSL for Continuous-Time Agent-Based
Modeling and Simulation

Before
A small snippet of the behavior specification

private void scheduleInfection () {
double currentTime = schedule . getTickCount ();
double infectiousNeighbors = getInfectiousNeighbors ();
if (infectiousNeighbors == 0) {

scheduledEvent = null ;
} else {

double rate = infectionRate * infectiousNeighbors ;
double waitingTime = RandomHelper . createExponential (rate).

nextDouble ();
scheduledEvent = schedule . schedule (ScheduleParameters .

createOneTime (currentTime + waitingTime), this , "
getInfected ");

}
}

December 11, 2016 c© 2016 UNIVERSITY OF ROSTOCK | INSTITUTE FOR COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 4 / 7

A DSL for Continuous-Time Agent-Based
Modeling and Simulation

After
The complete behavior specification

addRule (() -> this . isInfectious () ,
() -> exp(recoverRate),
() -> this . infectionState = InfectionState . RECOVERED);

addRule (() -> this . isSusceptible () ,
() -> exp(infectionRate * neighbours (SIRAgent . class).

filter ((SIRAgent agent) -> agent . isInfectious ()).
size ()),

() -> this . infectionState = InfectionState . INFECTIOUS);

December 11, 2016 c© 2016 UNIVERSITY OF ROSTOCK | INSTITUTE FOR COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 5 / 7

A DSL for Continuous-Time Agent-Based
Modeling and Simulation

Output
Manual scheduling, First Reaction Method, Next Reaction Method

December 11, 2016 c© 2016 UNIVERSITY OF ROSTOCK | INSTITUTE FOR COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 6 / 7

A DSL for Continuous-Time Agent-Based
Modeling and Simulation

An embedded DSL for modeling
Reflections and lessons learned

• Separate problem definition (model) from execution code (simulators)

⇒ Multiple simulation algorithms are applicable and can be reused

• No reference to the schedule in the model

⇒ Succinct and readable model

• Rule-based syntax (conditions, waiting time, effect) and CTMC semantics

⇒ Semantically sound simulation with SSA-style execution algorithms

• Efficiency depends on exploiting locality

⇒ More work on model analysis needed

December 11, 2016 c© 2016 UNIVERSITY OF ROSTOCK | INSTITUTE FOR COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 7 / 7

