
Complex Simulation Experiments Made Easy
Advanced Tutorial

TOM WARNKE AND ADELINDE M. UHRMACHER

Modeling and Simulation Group
Institute of Computer Science
University of Rostock

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 1 / 53

This tutorial in a nutshell

This tutorial introduces the Simulation Experiment Specification on a Scala Layer (SESSL)1, a unified tool for
simulation experiments

• with any simulation model and
• with any experimental setup
• that can be easily replicated.

SESSL’s source code is freely available under the Apache 2.0 License at http://sessl.org.

1R. Ewald and A. M. Uhrmacher. “SESSL: A Domain-specific Language for Simulation Experiments”. In: ACM TOMACS 24.2
(2014). DOI: 10.1145/2567895.

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 2 / 53

http://sessl.org
https://doi.org/10.1145/2567895

Context

Simulation
System

Simulation
System

Simulation
System

Experimental
Method

Experimental
Method

Experimental
Method

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 3 / 53

Context

NetLogo

DEVS

ODEs

Design of
Experiments

Simulation-
based

Optimization

Uncertainty
Quantification

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 4 / 53

Context

NetLogo

DEVS

ODEs

Design of
Experiments

Simulation-
based

Optimization

Uncertainty
Quantification

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 5 / 53

Context

NetLogo

DEVS

ODEs

Design of
Experiments

Simulation-
based

Optimization

Uncertainty
Quantification

SESSL

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 6 / 53

Context

NetLogo

DEVS

ODEs

Design of
Experiments

Simulation-
based

Optimization

Uncertainty
Quantification

SESSL

DSL

Experiment

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 7 / 53

Benefits of using SESSL

• If you develop simulation software, using SESSL gives your users access to many experimental
methods.

• If you develop experimental methods, using SESSL makes your methods available for many simulation
applications.

• If you are a modeler, using SESSL
• gives you an expressive domain-specific language (DSL) for running various kinds of simulation experiments

and
• enables you to distribute executable experiments with your model, allowing for replication of your results.

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 8 / 53

The experiment DSL

compared to other specification approaches

Executable

ReadableFlexible
Text

Script

SESSL

GUI

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 9 / 53

Topics

Key Design Concepts

Playing around with a simple simulation experiment

Complex simulation experiments

Extending SESSL

Discussion & Conclusions

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 10 / 53

Separation of concerns

Model, simulator, and experiment

Experiment
Specification SESSL

Recorded
results

Simulator
Model

Specification

Input files Output filesSoftware

Analysis

cf. B. Zeigler et al. Theory of Modeling and Simulation. 2000

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 11 / 53

Connection to external Software

Simulation
System

Simulation
System

Simulation
System

Experimental
Method

Experimental
Method

Experimental
Method

SESSL

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 12 / 53

Bindings

Simulation
System

Simulation
System

Simulation
System

Experimental
Method

Experimental
Method

Experimental
Method

SESSL

Binding

Binding

Binding

Binding

Binding

Binding

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 13 / 53

Bindings

Simulation
System

Simulation
System

Simulation
System

Experimental
Method

Experimental
Method

Experimental
Method

SESSL

Binding

Binding

Binding

Binding

Binding

Binding

Experiment

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 14 / 53

Apache Maven

SESSL exploits Apache Maven2for project management. It allows

• declaring dependencies between components
• publishing artifacts to public repositories
• downloading needed dependencies from public repositories3

• bundling experiments in an executable package for replication

Replicating a packaged experiment is straightforward (one-click).

Artifact Review and Badging in the ACM Digital Library (e.g., TOMACS, PADS)4

2https://maven.apache.org
3https://search.maven.org
4https://www.acm.org/publications/policies/artifact-review-badging

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 15 / 53

https://maven.apache.org
https://search.maven.org
https://www.acm.org/publications/policies/artifact-review-badging

Internal Domain-specific language

SESSL provides an internal domain-specific language. A SESSL experiment only consists of valid Scala5

code. Consequently, SESSL experiments are executable like any other Scala program.

SESSL experiments can be augmented with arbitrary Scala code. Thus, SESSL experiments are flexible
and can be extended with custom features ad hoc.

Scala runs on the Java Virtual Machine (JVM), which is available for every major computer architecture and
operating system. Most computers have a JVM installed. Thus, SESSL experiments are
platform-independent.

5https://scala-lang.org

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 16 / 53

https://scala-lang.org

Internal Domain-specific language

import sessl._

import sessl.mlrules._

execute {

new Experiment with Observation with CSVOutput {

model = "./prey-predator.mlrj"
simulator = SimpleSimulator()

stopTime = 100

replications = 5

scan("wolfGrowth" <~ (0.0001, 0.0002))

observe("s" ~ count("Sheep"))
observeAt(range(0, 1, 100))

withRunResult(writeCSV)
}

}

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 17 / 53

Experiment Layers

Experiment Setup

Analysis

Ex
pe

rim
en

t

C
on

fig
ur

at
io

n

R
ep

lic
at

io
n

Analysis

Analysis

Simulation

Observation

Steering

new Experiment {
// ...
stopCondition = // ...
replicationCondition = // ...
observe(/* ... */)
observeAt(/* ... */)

withRunResult {
// ...

}
withReplicationsResult {
// ...

}
withExperimentResult {
// ...

}
}

cf. S. Rybacki et al. “Template and Frame Based Experiment Workflows in Modeling and Simulation Software with WORMS”. In:
IEEE SERVICES. 2012. DOI: 10.1109/SERVICES.2012.22

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 18 / 53

https://doi.org/10.1109/SERVICES.2012.22

Traits and composition

Code is organized in traits.

• A binding to an external software X contains code that is specific to X.
• The SESSL core contains code that is not specific to external software and can be reused across

bindings.
• A concrete Experiment mixes in the traits with the required features:

new Experiment with Observation with CSVOutput

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 19 / 53

Traits and composition

AbstractExperiment

new Experiment with Observation with CSVOutput {

 model = "./prey-predator.mlrj"

 /* ... */

 observe("s" ~ count("Sheep"))

 withRunResult(writeCSV)

}

AbstractObservation

CSVOutput
model = ...

writeCSV

withRunResult, observe

Experiment Observation

C
or

e
B

in
d

in
g

Ex
p

er
im

en
t

count

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 20 / 53

Topics

Key Design Concepts

Playing around with a simple simulation experiment

Complex simulation experiments

Extending SESSL

Discussion & Conclusions

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 21 / 53

The SESSL quickstart project

http://sessl.org

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 22 / 53

http://sessl.org

The SESSL quickstart project

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 23 / 53

The SESSL quickstart project

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 24 / 53

The minimal experiment package

Experiment The experiment is specified in a Scala file.
Model Typically, the model to simulate is also defined in a file.

Maven file This contains information about software dependencies.

The other files are for convenience.

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 25 / 53

Playing with the quickstart project

The quickstart project packages an experiment with a simple prey-predator model defined in ML-Rules6.

• Initially, the model contains 1000 sheep and 1000 wolves.
• Three concurrent processes produce the model behavior:

• Sheep -> 2 Sheep @ sheepGrowth;

• Sheep + Wolf -> 2 Wolf @ wolfGrowth;

• Wolf -> @ wolfDeath;

• Each process is equipped with a rate.

6C. Maus et al. “Rule-based multi-level modeling of cell biological systems”. In: BMC Systems Biology 5.1 (2011). DOI:
10.1186/1752-0509-5-166.

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 26 / 53

https://doi.org/10.1186/1752-0509-5-166

Playing with the quickstart project

Hands-on:

• (If necessary) install a JRE and/or set the environment variable $JAVA_HOME

• Inspect the Maven file
• Inspect the experiment file
• Run the experiment with run.sh or run.bat
• Plot the results of a run (e.g., with Excel or R)
• Add observation of the predator species (Wolf)
• Change the wolfGrowth parameter to 0
• Adapt the stop condition to stop the simulation if it runs too long

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 27 / 53

https://docs.oracle.com/javase/8/docs/technotes/guides/install/install_overview.html

Topics

Key Design Concepts

Playing around with a simple simulation experiment

Complex simulation experiments

Extending SESSL

Discussion & Conclusions

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 28 / 53

Result post-processing

We might want to determine the time points at which more wolves than sheep were observed in each run.

We can write arbitrary Scala code in the analysis blocks and process the accumulated simulation results.

Such post-processing can support the exploratory analysis of the experiment results with other tools (e.g.,
R). It can also be packaged with an experiment for replicable output analysis.

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 29 / 53

Result post-processing

new Experiment with Observation {
// ...
withRunResult { result =>
val sheep = result.trajectory[Double]("s").toMap
val wolves = result.trajectory[Double]("w").toMap

// determine the time points with more wolves than sheep
val moreWolves = sheep.keys.filter(t => sheep(t) < wolves(t)).toSeq.sorted
println(moreWolves.mkString(", "))

}
}

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 30 / 53

Source: sessl-examples

https://git.informatik.uni-rostock.de/mosi/sessl-examples/blob/1b4878ce34f60ce03a3d7cd4ca62022a7ce1969b/resultProcessing/ResultProcessingExample.scala

Result post-processing

0 20 40 60 80 100 120
0

10000

20000

30000

40000

50000

60000

s

w

5.0, 6.0, 7.0, 8.0, 9.0, 14.0, 15.0, 16.0, 17.0, 18.0, ...

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 31 / 53

Design of experiments

Design of Experiments: systematic exploration of the model’s parameter space7

For example:

• Factorial Design
• Central Composite Design
• Latin Hypercube Design

7S. M. Sanchez and H. Wan. “Work smarter, not harder: A tutorial on designing and conducting simulation experiments”. In: WSC
2015. DOI: 10.1109/WSC.2015.7408296.

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 32 / 53

https://doi.org/10.1109/WSC.2015.7408296

Design of experiments

Assume a model with input parameters a, b, . . . , g. The following snippet produces
1 × 2 × 10 × 5 × 9 = 900 design points.
execute {

new Experiment with CentralCompositeDesign with LHCSampling8 {
// ...
set("a" <~ 1.0)
scan("b" <~ ("on", "off"))
scan("c" <~ range(0.1, 0.1, 1.0))
lhc(numPoints = 5)("d" <~ interval(0, 5), "e" <~ interval(0.0, 10.0))
centralComposite("f" <~ interval(1, 2), "g" <~ interval(3, 4))

}
}

8LHCSampling is implemented in a binding to SSJ (P. L’Ecuyer et al. “SSJ: A Framework for Stochastic Simulation in Java”. In: WSC
2002. DOI: 10.1109/WSC.2002.1172890)

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 33 / 53

Source: sessl-examples

https://doi.org/10.1109/WSC.2002.1172890
https://git.informatik.uni-rostock.de/mosi/sessl-examples/blob/1b4878ce34f60ce03a3d7cd4ca62022a7ce1969b/experimentDesign/ExperimentDesignExample.scala

Replication conditions

SESSL dynamically determine show many replications are necessary. It executes runs in batches and
checks the given replication condition after each batch. This is done for each parameter combination.

For instance, we might want to execute replications until the confidence interval (CI) of the observable’s
mean is small enough. Here, small enough means that the 99 % CI’s half-width is less than 1 % of the mean.

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 34 / 53

Replication conditions

Experiment Setup

Analysis

Ex
pe

rim
en

t

C
on

fig
ur

at
io

n

R
ep

lic
at

io
n

Analysis

Analysis

Simulation

Observation

Steering

new Experiment {
// ...
stopCondition = // ...
replicationCondition = // ...
observe(/* ... */)
observeAt(/* ... */)

withRunResult {
// ...

}
withReplicationsResult {
// ...

}
withExperimentResult {
// ...

}
}

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 35 / 53

Replication conditions

For each parameter combination, execute replications until the 99% CI for the mean of all observations of a
is small enough, but at most 1000 replications.
execute {
new Experiment with Observation with ParallelExecution {
// ...
parallelThreads = -1

stopTime = 100

observe("a" ~ count("A"))
observeAt(stopTime)

replicationCondition = MeanConfidenceReached(
confidence = 0.99,
relativeHalfWidth = 0.01,
observable = "a") or FixedNumber(1000)

batchSize = 3
}

}

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 36 / 53

Source: sessl-examples

https://git.informatik.uni-rostock.de/mosi/sessl-examples/blob/1b4878ce34f60ce03a3d7cd4ca62022a7ce1969b/replicationCondition/ReplicationConditionExample.scala

Simulation-based optimization

An experiment is executed to evaluate the target function of an optimization algorithm.

For example, a meta-heuristic optimization algorithm:

• Evolutionary Algorithms
• Simulated Annealing
• Particle Swarm Optimization
• Differential Evolution

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 37 / 53

Simulation-based optimization

minimize { (params, objective) => execute {
new Experiment with Observation with ParallelExecution {
//...
for ((input, value) <- params.values)
set(input <~ value)

withExperimentResult { results =>
objective <~ // ... calculate target function value from experiment results

}
}

} } using new Opt4JSetup9 {
param(name = "a", lowerBound = 5E-5, upperBound = 5E-3)
// ...
optimizer = ParticleSwarmOptimization(iterations = 30, particles = 20)
withOptimizationResults { results => println("Overall results: " + results.head) }

}

9Implemented in a binding to Opt4J (M. Lukasiewycz et al. “Opt4J - A Modular Framework for Meta-heuristic Optimization”. In:
GECCO 2011. 2011. DOI: 10.1145/2001576.2001808)

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 38 / 53

Source: sessl-examples

https://doi.org/10.1145/2001576.2001808
https://git.informatik.uni-rostock.de/mosi/sessl-examples/blob/1b4878ce34f60ce03a3d7cd4ca62022a7ce1969b/WntOptimization/WntOptimizationExample.scala

Statistical Model-Checking

General idea

Statistical model-checking is a method to decide whether a random simulation run of a model satisfies a
given formal property with at least a certain probability10. The statistical parameters are:

• the probability threshold p

• the probability bounds for Type I and Type II errors alpha and beta, and
• the width of the indifference region delta.

The property is usually defined in some temporal logic. For example, SESSL supports the Metric Interval
Temporal Logic (MITL)11.

By defining validation criteria as properties, replicable validation experiments can be packaged and
published together with a model.

10G. Agha and K. Palmskog. “A Survey of Statistical Model Checking”. In: ACM TOMACS 28.1 (2018). DOI: 10.1145/3158668.
11O. Maler and D. Nickovic. “Monitoring Temporal Properties of Continuous Signals”. In: Formal Techniques, Modelling and Analysis

of Timed and Fault-Tolerant Systems. 2004. DOI: 10.1007/978-3-540-30206-3_12.

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 39 / 53

Source: sessl-examples

https://doi.org/10.1145/3158668
https://doi.org/10.1007/978-3-540-30206-3_12
https://git.informatik.uni-rostock.de/mosi/sessl-examples/blob/1b4878ce34f60ce03a3d7cd4ca62022a7ce1969b/modelChecking/ModelCheckingExample.scala

Statistical Model-Checking

SESSL integration

execute {
new Experiment with Observation with StatisticalModelChecking {
//...
test = SequentialProbabilityRatioTest(// these parameters yield 180 simulation runs
p = 0.8,
alpha = 0.05,
beta = 0.05,
delta = 0.05)

// The following MITL property states that sheep do not die out the first 50 time units.
prop = MITL(G(0, 50)(OutVar[Double]("s") > Constant(0)))

}
}

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 40 / 53

Source: sessl-examples

https://git.informatik.uni-rostock.de/mosi/sessl-examples/blob/1b4878ce34f60ce03a3d7cd4ca62022a7ce1969b/modelChecking/ModelCheckingExample.scala

Topics

Key Design Concepts

Playing around with a simple simulation experiment

Complex simulation experiments

Extending SESSL

Discussion & Conclusions

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 41 / 53

Extending SESSL

Adding an experiment trait

Assume we want to import a CSV file with a list of design points for an experiment.
sheepGrowth,wolfGrowth,wolfDeath
0.1,0.1,0.1
0.0,0.1,0.1
0.1,0.0,0.1
0.1,0.1,0.0

Step 1: Develop the code to read in the file directly in the experiment.
new Experiment with Observation with CSVOutput {
model = "./prey-predator.mlrj"
simulator = SimpleSimulator()
// ...
val designPoints = ??? // invoke CSV reader library (omitted)
configs(designPoints.toList: _*) // use imported design points as model configurations

}

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 42 / 53

Extending SESSL

Adding an experiment trait

Step 2: Create a trait and wrap the code in a reusable method.
trait CSVInput {
this: AbstractExperiment =>

def designFromCSV(fileName: String): Unit = {
val designPoints = ??? // invoke CSV reader library (omitted)
configs(designPoints.toList: _*) // use imported design points as model configurations

}
}

Step 3: Use the new trait and the defined method in future experiments.
execute {
new Experiment with Observation with CSVOutput with CSVInput {
model = "./prey-predator.mlrj"
simulator = SimpleSimulator()
// ...

designFromCSV("design.csv")
}

}

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 43 / 53

Extending SESSL

Adding a binding

Developing a new binding to a simulation system requires

• an API exposed by the simulation system
• some knowledge of SESSL’s architecture.

To make most of the features of SESSL available, two methods need to be implemented in the binding:

• Start a simulation run and wait for it to finish, for example
• Start a process (e.g., via a command line interface)
• Call an API method

• Convert the observed results to SESSL’s result format, for example
• Read in files
• Retrieve stored observations via an API

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 44 / 53

Extending SESSL

Adding a binding

For example, the binding for PSSALib12 (written in C++) uses a CLI:

Start simulation runs:
pssa_cli/simulator

-m spdm

-i model.xml

-n 100

--tend 10000

--dt 10

-o <output-path>

Convert results to CSV:
pssa_cli/analyzer

-r trajectories

-i <input-path>

-s obs1,obs2

-o <output-path>

12Oleksandr Ostrenko et al. “pSSAlib: The Partial-propensity Stochastic Chemical Network Simulator”. In: PLOS Computational
Biology 13.12 (2017). DOI: 10.1371/journal.pcbi.1005865.

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 45 / 53

https://mosaic.mpi-cbg.de/pSSALib/pSSAlib.html#cli
https://doi.org/10.1371/journal.pcbi.1005865

Extending SESSL

Adding a binding

NetLogo

DEVS

ODEs

Design of
Experiments

Simulation-
based

Optimization

Uncertainty
Quantification

SESSL

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 46 / 53

Extending SESSL

Adding a binding

PSSALibNetLogo

DEVS

ODEs

Design of
Experiments

Simulation-
based

Optimization

Uncertainty
Quantification

SESSL

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 47 / 53

Topics

Key Design Concepts

Playing around with a simple simulation experiment

Complex simulation experiments

Extending SESSL

Discussion & Conclusions

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 48 / 53

Choice of host language

Language design

Scala is a very powerful language, but with great power comes great responsibility.

To fully exploit SESSL and all its features, one must know Scala. Sometimes, the Scala embedding tends to
provide too much flexibility and power.

For example, all these lines are valid Scala code and do the same thing:
withRunResult(writeCSV)
withRunResult(r => writeCSV(r))
withRunResult(writeCSV(_))
withRunResult(writeCSV _)
withRunResult { writeCSV }
withRunResult { r => writeCSV(r) }
withRunResult { writeCSV(_) }
withRunResult { writeCSV _ }

• Users may be overwhelmed by the possibilities of SESSL
• Experiment specifications with a lot of Scala code may be less readable

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 49 / 53

Choice of host language

Type safety

By using native Scala variables to store observables, type information about observables is usable by the
Scala compiler. For example, the compiler can spot attempts to calculate a mean of non-numeric
observations.
observe("s" ~ count("Sheep")) // "s" is a String value, information from count is lost
withExperimentResult(result =>
println(result.mean[Double]("s")) // user needs to explicitly annotate the type Double

)

val s = observe(count("Sheep")) // s is of type Observable[Double], inferred from count
withExperimentResult(result =>
println(result.mean(s)) // the compiler allows the call to mean without annotations

)

This exemplifies the trade-off between exploiting features of the host language Scala and “protecting” users
from having to learn or understand Scala.

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 50 / 53

Replicability of experiments

Maven makes replicating simulation experiments very easy, if:

• all dependencies run on the JVM
• all dependencies are available from a public Maven repository

This is true for a lot of software.

However, natively compiled software (e.g., written in C++) can not be managed by Maven and requires
manual setup by the user (only once).

Alternatively, SESSL experiments and pre-compiled software can be bundled together in a Docker container
or similar architecture-agnostic packages.

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 51 / 53

Interactive experiments

SESSL is made for first defining experiments with a DSL and then running them. A more interactive,
explorative experimentation style requires a different approach, for example integration in a
Read-Eval-Print-Loop (REPL) as in R.

As SESSL experiments are just plain Scala code, the Scala REPL can be used for interactive
experimentation. Alternatively, Scala experiments can be started from external tools (e.g., Python scripts).

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 52 / 53

Key takeaways

• SESSL is modular and easily allows
• creating bindings to external software
• adding new features
• composing features for experiments

• SESSL makes experiment replication as easy as possible
• SESSL can be combined with external software and custom ad hoc implementations in various ways
• SESSL facilitates wrapping code in reusable chunks
• SESSL development relies on standard programming tools (IDEs, libraries)
• SESSL experiments rely on persistent artifacts and will never∗ stop working

Winter Simulation Conference 2018 c© 2018 UNIVERSITÄT ROSTOCK | INSTITUTE OF COMPUTER SCIENCE, MODELING AND SIMULATION GROUP 53 / 53

	Key Design Concepts
	Playing around with a simple simulation experiment
	Complex simulation experiments
	Extending SESSL
	Discussion & Conclusions

